EconPapers    
Economics at your fingertips  
 

An Empirical Analysis of Default Prediction Models: Evidence from Indian Listed Companies

Vandana Gupta

Journal of Prediction Markets, 2014, vol. 8, issue 3, 1-23

Abstract: This paper attempts to evaluate the predictive ability of three default prediction models: the market-based KMV model, the Z-score model using discriminant analysis (DA), and the logit model; and identifies the key default drivers. The research extends prior empirical work by modeling and testing the impact of financial ratios, macro-economic factors, corporate governance and firm-specific variables in predicting default. For the market-based model, the author has extended the works of KMV in developing a suitable algorithm for determining probability of default (PD). While for the KMV model, the continuous observations of PD are used as the dependent variable, for the accounting-based models, ratings assigned are the proxy for default (those rated ’D’ are defaulted and rated ‘AAA’ and ‘A’ are solvent). The research findings largely support the hypothesis that solvency, profitability and liquidity ratios do impact the default risk, but adding other covariates improves the predictive ability of the models. Through this study, the author recommends that accounting –based models and market based models are conceptually different. While market-based models are forward looking and inclusion of market data makes the default risk quantifiable; to make the PD more exhaustive, it is important to factor in the information provided in the financial statements. The conclusions drawn are that the disclosures in financial statements can help predict default risk as financial distress risk is likely to evolve over time and will be reflected in financial statements beyond accounting ratios. Moreover this will also help divulge “creative accounting” practices by corporates.

Keywords: default risk; discriminant; logistic; ratios; financial distress; market-based (search for similar items in EconPapers)
JEL-codes: L83 (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
http://ubplj.org/index.php/jpm/article/view/946 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:buc:jpredm:v:8:y:2014:i:3:p:1-23

Ordering information: This journal article can be ordered from
http://www.predictio ... ex_files/Page418.htm

Access Statistics for this article

Journal of Prediction Markets is currently edited by Leighton Vaughan Williams, Nottingham Business School

More articles in Journal of Prediction Markets from University of Buckingham Press
Bibliographic data for series maintained by Dominic Cortis, University of Malta ().

 
Page updated 2025-03-19
Handle: RePEc:buc:jpredm:v:8:y:2014:i:3:p:1-23