Environmental Efficiency of Apple Production in China: A Translog Stochastic Frontier Analysis
Xiuguang Bai,
Ruhul Salim and
Harry Bloch
Agricultural and Resource Economics Review, 2019, vol. 48, issue 2, 199-220
Abstract:
This article estimates technical and environmental efficiencies using the stochastic frontier analysis with panel data of twenty-two main apple production provinces in China during 1992–2014. Results show that the environmental efficiency for pesticide input alone has lower mean value of 0.337 than environmental efficiency for the two environmentally detrimental inputs, pesticide and chemical fertilizer, which is 0.782. Furthermore, all efficiency scores have decreasing trends over time. Loess Plateau is more environmentally efficient than the Bohai bay region. Results of output elasticities show that chemical fertilizer has a mean value of 0.225, which is higher than for material, labor, and pesticide input. Also, apple production in China experiences decreasing returns to scale. Finally, it is also discovered that labor and chemical fertilizer have a substitute relationship, while material and labor have a complementary relationship, as do chemical fertilizer and pesticide. The results from the study should prove useful for reallocating input resources and improving environmental efficiency.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:agrerw:v:48:y:2019:i:02:p:199-220_00
Access Statistics for this article
More articles in Agricultural and Resource Economics Review from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().