Food and agricultural industry locational determinants research: Aggregation bias and size measurement in the agricultural support industry
Craig Carpenter,
Anders Van Sandt and
Scott Loveridge
Agricultural and Resource Economics Review, 2022, vol. 51, issue 3, 558-578
Abstract:
Federal administrative data present a valuable opportunity for food and agricultural industry locational outcome research. We review issues with aggregated U.S. public data and summarize current methods. An example empirical approach combines federal administrative and secondary data. We compare results with differing levels of industrial aggregation. Results indicate locational determinants vary in magnitude, sign, and significance across industries and their sub-industries, as well as between employers and non-employers – nuances commonly missed with public data. We conclude by emphasizing that studies relying on public (more-aggregated) data may miss locational outcome relationships or inappropriately generalize to sub-industries and suggest data access changes.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:agrerw:v:51:y:2022:i:3:p:558-578_7
Access Statistics for this article
More articles in Agricultural and Resource Economics Review from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().