EconPapers    
Economics at your fingertips  
 

Scalability and robustness of feed yard mortality prediction modeling to improve profitability

Ryan Feuz, Kyle Feuz, Jeffrey Gradner, Miles Theurer and Myriah Johnson

Agricultural and Resource Economics Review, 2022, vol. 51, issue 3, 610-632

Abstract: Cattle feed yards routinely track and collect data for individual calves throughout the feeding period. Using such operational data from nine U.S. feed yards for the years 2016–2019, we evaluated the scalability and economic viability of using machine learning classifier predicted mortality as a culling decision aid. The expected change in net return per head when using the classifier predictions as a culling aid as compared to the status quo culling protocol for calves having been pulled at least once for bovine respiratory disease was simulated. This simulated change in net return ranged from −$1.61 to $19.46/head. Average change in net return and standard deviation for the nine feed yards in this study was $6.31/head and $7.75/head, respectively.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:agrerw:v:51:y:2022:i:3:p:610-632_9

Access Statistics for this article

More articles in Agricultural and Resource Economics Review from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:agrerw:v:51:y:2022:i:3:p:610-632_9