Mixing Methods: A Bayesian Approach
Macartan Humphreys and
Alan M. Jacobs
American Political Science Review, 2015, vol. 109, issue 4, 653-673
Abstract:
We develop an approach to multimethod research that generates joint learning from quantitative and qualitative evidence. The framework—Bayesian integration of quantitative and qualitative data (BIQQ)—allows researchers to draw causal inferences from combinations of correlational (cross-case) and process-level (within-case) observations, given prior beliefs about causal effects, assignment propensities, and the informativeness of different kinds of causal-process evidence. In addition to posterior estimates of causal effects, the framework yields updating on the analytical assumptions underlying correlational analysis and process tracing. We illustrate the BIQQ approach with two applications to substantive issues that have received significant quantitative and qualitative treatment in political science: the origins of electoral systems and the causes of civil war. Finally, we demonstrate how the framework can yield guidance on multimethod research design, presenting results on the optimal combinations of qualitative and quantitative data collection under different research conditions.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:apsrev:v:109:y:2015:i:04:p:653-673_00
Access Statistics for this article
More articles in American Political Science Review from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().