Declaring and Diagnosing Research Designs
Graeme Blair,
Jasper Cooper,
Alexander Coppock and
Macartan Humphreys
American Political Science Review, 2019, vol. 113, issue 3, 838-859
Abstract:
Researchers need to select high-quality research designs and communicate those designs clearly to readers. Both tasks are difficult. We provide a framework for formally “declaring” the analytically relevant features of a research design in a demonstrably complete manner, with applications to qualitative, quantitative, and mixed methods research. The approach to design declaration we describe requires defining a model of the world (M), an inquiry (I), a data strategy (D), and an answer strategy (A). Declaration of these features in code provides sufficient information for researchers and readers to use Monte Carlo techniques to diagnose properties such as power, bias, accuracy of qualitative causal inferences, and other “diagnosands.” Ex ante declarations can be used to improve designs and facilitate preregistration, analysis, and reconciliation of intended and actual analyses. Ex post declarations are useful for describing, sharing, reanalyzing, and critiquing existing designs. We provide open-source software, DeclareDesign, to implement the proposed approach.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:apsrev:v:113:y:2019:i:3:p:838-859_15
Access Statistics for this article
More articles in American Political Science Review from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().