EconPapers    
Economics at your fingertips  
 

Administrative Records Mask Racially Biased Policing

Dean Knox, Will Lowe and Jonathan Mummolo

American Political Science Review, 2020, vol. 114, issue 3, 619-637

Abstract: Researchers often lack the necessary data to credibly estimate racial discrimination in policing. In particular, police administrative records lack information on civilians police observe but do not investigate. In this article, we show that if police racially discriminate when choosing whom to investigate, analyses using administrative records to estimate racial discrimination in police behavior are statistically biased, and many quantities of interest are unidentified—even among investigated individuals—absent strong and untestable assumptions. Using principal stratification in a causal mediation framework, we derive the exact form of the statistical bias that results from traditional estimation. We develop a bias-correction procedure and nonparametric sharp bounds for race effects, replicate published findings, and show the traditional estimator can severely underestimate levels of racially biased policing or mask discrimination entirely. We conclude by outlining a general and feasible design for future studies that is robust to this inferential snare.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:apsrev:v:114:y:2020:i:3:p:619-637_2

Access Statistics for this article

More articles in American Political Science Review from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing (csjnls@cambridge.org).

 
Page updated 2025-03-19
Handle: RePEc:cup:apsrev:v:114:y:2020:i:3:p:619-637_2