A Note on Posttreatment Selection in Studying Racial Discrimination in Policing
Qingyuan Zhao,
Luke J Keele,
Dylan S Small and
Marshall M Joffe
American Political Science Review, 2022, vol. 116, issue 1, 337-350
Abstract:
We discuss some causal estimands that are used to study racial discrimination in policing. A central challenge is that not all police–civilian encounters are recorded in administrative datasets and available to researchers. One possible solution is to consider the average causal effect of race conditional on the civilian already being detained by the police. We find that such an estimand can be quite different from the more familiar ones in causal inference and needs to be interpreted with caution. We propose using an estimand that is new for this context—the causal risk ratio, which has more transparent interpretation and requires weaker identification assumptions. We demonstrate this through a reanalysis of the NYPD Stop-and-Frisk dataset. Our reanalysis shows that the naive estimator that ignores the posttreatment selection in administrative records may severely underestimate the disparity in police violence between minorities and whites in these and similar data.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:apsrev:v:116:y:2022:i:1:p:337-350_22
Access Statistics for this article
More articles in American Political Science Review from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().