Regularized Regression Can Reintroduce Backdoor Confounding: The Case of Mass Polarization
Jonathan Mellon and
Christopher Prosser
American Political Science Review, 2025, vol. 119, issue 4, 2002-2010
Abstract:
Regularization can improve statistical estimates made with highly correlated data. However, any regularization procedure embeds assumptions about the data generating process that can have counterintuitive consequences when those assumptions are untenable. We show that rather than simply shrinking estimates, regularization can reopen backdoor causal paths, inflating the estimates of some effects, and in the wrong circumstances, even reversing their direction. Recently, Cavari and Freedman (2023), argued that declining cooperation rates in surveys have inflated measures of mass polarization. We show that this finding is driven by large penalty terms in their regularized regressions, which leads to the estimates being confounded with time. Alternative methods do not show a clear positive or negative effect of declining cooperation on estimated levels of mass polarization.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:apsrev:v:119:y:2025:i:4:p:2002-2010_26
Access Statistics for this article
More articles in American Political Science Review from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().