Consequences of the Condorcet Jury Theorem for Beneficial Information Aggregation by Rational Agents
Andrew McLennan
American Political Science Review, 1998, vol. 92, issue 2, 413-418
Abstract:
“Naïve” Condorcet Jury Theorems automatically have “sophisticated” versions as corollaries. A Condorcet Jury Theorem is a result, pertaining to an election in which the agents have common preferences but diverse information, asserting that the outcome is better, on average, than the one that would be chosen by any particular individual. Sometimes there is the additional assertion that, as the population grows, the probability of an incorrect decision goes to zero. As a consequence of simple properties of common interest games, whenever “sincere” voting leads to the conclusions of the theorem, there are Nash equilibria with these properties. In symmetric environments the equilibria may be taken to be symmetric.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (179)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:apsrev:v:92:y:1998:i:02:p:413-418_21
Access Statistics for this article
More articles in American Political Science Review from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().