Cluster-Based Early Warning Indicators for Political Change in the Contemporary Levant
Philip A. Schrodt and
Deborah J. Gerner
American Political Science Review, 2000, vol. 94, issue 4, 803-817
Abstract:
We use cluster analysis to develop a model of political change in the Levant as reflected in the World Event Interaction Survey coded event data generated from Reuters between 1979 and 1998. A new statistical algorithm that uses the correlation between dyadic behaviors at two times identifies clusters of political activity. The transition to a new cluster occurs when a point is closer in distance to subsequent points than to preceding ones. These clusters begin to “stretch” before breaking apart, which serves as an early warning indicator. The clusters correspond well with phases of political behavior identified a priori. A Monte Carlo analysis shows that the clustering and early warning measures are not random; they perform very differently in simulated data sets with similar statistical characteristics. Our study demonstrates that the statistical analysis of newswire reports can yield systematic early warning indicators, and it provides empirical support for the theoretical concept of distinct behavioral phases in political activity.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:apsrev:v:94:y:2000:i:04:p:803-817_22
Access Statistics for this article
More articles in American Political Science Review from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().