BAYESIAN REFERENCE ANALYSIS OF COINTEGRATION
Mattias Villani
Econometric Theory, 2005, vol. 21, issue 2, 326-357
Abstract:
A Bayesian reference analysis of the cointegrated vector autoregression is presented based on a new prior distribution. Among other properties, it is shown that this prior distribution distributes its probability mass uniformly over all cointegration spaces for a given cointegration rank and is invariant to the choice of normalizing variables for the cointegration vectors. Several methods for computing the posterior distribution of the number of cointegrating relations and distribution of the model parameters for a given number of relations are proposed, including an efficient Gibbs sampling approach where all inferences are determined from the same posterior sample. Simulated data are used to illustrate the procedures and for discussing the well-known issue of local nonidentification.The author thanks Luc Bauwens, Anant Kshirsagar, Peter Phillips, Herman van Dijk, four anonymous referees, and especially Daniel Thorburn for helpful comments. Financial support from the Swedish Council of Research in Humanities and Social Sciences (HSFR) grant F0582/1999 and Swedish Research Council (Vetenskapsrådet) grant 412-2002-1007 is gratefully acknowledged. The views expressed in this paper are solely the responsibility of the author and should not be interpreted as reflecting the views of the Executive Board of Sveriges Riksbank.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:21:y:2005:i:02:p:326-357_05
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().