EconPapers    
Economics at your fingertips  
 

SUBGEOMETRICALLY ERGODIC AUTOREGRESSIONS

Mika Meitz and Pentti Saikkonen

Econometric Theory, 2022, vol. 38, issue 5, 959-985

Abstract: In this paper, we discuss how the notion of subgeometric ergodicity in Markov chain theory can be exploited to study stationarity and ergodicity of nonlinear time series models. Subgeometric ergodicity means that the transition probability measures converge to the stationary measure at a rate slower than geometric. Specifically, we consider suitably defined higher-order nonlinear autoregressions that behave similarly to a unit root process for large values of the observed series but we place almost no restrictions on their dynamics for moderate values of the observed series. Results on the subgeometric ergodicity of nonlinear autoregressions have previously appeared only in the first-order case. We provide an extension to the higher-order case and show that the autoregressions we consider are, under appropriate conditions, subgeometrically ergodic. As useful implications, we also obtain stationarity and $\beta $ -mixing with subgeometrically decaying mixing coefficients.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
Working Paper: Subgeometrically ergodic autoregressions (2020) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:38:y:2022:i:5:p:959-985_6

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-31
Handle: RePEc:cup:etheor:v:38:y:2022:i:5:p:959-985_6