Economics at your fingertips  

Subgeometrically ergodic autoregressions

Mika Meitz and Pentti Saikkonen ()

Papers from

Abstract: In this paper we discuss how the notion of subgeometric ergodicity in Markov chain theory can be exploited to study the stability of nonlinear time series models. Subgeometric ergodicity means that the transition probability measures converge to the stationary measure at a rate slower than geometric. Specifically, we consider higher-order nonlinear autoregressions that may exhibit rather arbitrary behavior for moderate values of the observed series and that behave in a near unit root manner for large values of the observed series. Generalizing existing first-order results, we show that these autoregressions are, under appropriate conditions, subgeometrically ergodic. As useful implications we also obtain stationarity and $\beta$-mixing with subgeometrically decaying mixing coefficients.

New Economics Papers: this item is included in nep-ets
Date: 2019-04, Revised 2019-04
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2019-10-09
Handle: RePEc:arx:papers:1904.07089