Estimating Linear Probability Functions: A Comparison of Approaches
David Debertin (),
Angelos Pagoulatos and
Eldon D. Smith
Journal of Agricultural and Applied Economics, 1980, vol. 12, issue 2, 65-69
Abstract:
A linear probability function permits the estimation of the probability of the occurrence or non-occurrence of a discrete event. Nerlove and Press (p. 3–9) outline several statistical problems that arise if such a function is estimated via OLS. In particular, heteroskedasticity inherent in such a regression model leads to inefficient estimates of parameters (Amemiya 1973, Horn and Horn). Moreover, without restrictions on the conventional OLS model, probability estimates lying outside the unit (0–1) interval are possible (Nerlove and Press). Goldberger and Kmenta suggest two approaches for alleviating the heteroskedasticity problems inherent in the OLS regression model. Logit analysis will also alleviate heteroskedasticity problems and ensure that estimated probabilities will lie within the unit interval (Amemiya 1974, Hauck and Donner, Hill and Kau, Horn and Horn, Horn, Horn, and Duncan, Theil 1970).
Date: 1980
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Journal Article: ESTIMATING LINEAR PROBABILITY FUNCTIONS: A COMPARISON OF APPROACHES (1980) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jagaec:v:12:y:1980:i:02:p:65-69_01
Access Statistics for this article
More articles in Journal of Agricultural and Applied Economics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().