EconPapers    
Economics at your fingertips  
 

Feedforward Neural Network Estimation of a Crop Yield Response Function

Wayne H. Joerding, Ying Li and Douglas L. Young

Journal of Agricultural and Applied Economics, 1994, vol. 26, issue 1, 252-263

Abstract: Feedforward networks have powerful approximation capabilities without the “explosion of parameters” problem faced by Fourier and polynomial expansions. This paper first introduces feedforward networks and describes their approximation capabilities, then we address several practical issues faced by applications of feedforward networks. First, we demonstrate networks can provide a reasonable estimate of a Bermudagrass hay fertilizer response function with the relatively sparse data often available from experiments. Second, we demonstrate that the estimated network with a practical number of hidden units provides reasonable flexibility. Third, we show how one can constrain feedforward networks to satisfy a priori information without losing their flexible functional form characteristic.

Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:jagaec:v:26:y:1994:i:01:p:252-263_01

Access Statistics for this article

More articles in Journal of Agricultural and Applied Economics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:jagaec:v:26:y:1994:i:01:p:252-263_01