Can Cattle Basis Forecasts Be Improved? A Bayesian Model Averaging Approach
Nicholas D. Payne,
Berna Karali and
Jeffrey Dorfman ()
Journal of Agricultural and Applied Economics, 2019, vol. 51, issue 2, 249-266
Abstract:
Basis forecasting is important for producers and consumers of agricultural commodities in their risk management decisions. However, the best performing forecasting model found in previous studies varies substantially. Given this inconsistency, we take a Bayesian approach, which addresses model uncertainty by combining forecasts from different models. Results show model performance differs by location and forecast horizon, but the forecast from the Bayesian approach often performs favorably. In some cases, however, the simple moving averages have lower forecast errors. Besides the nearby basis, we also examine basis in a specific month and find that regression-based models outperform others in longer horizons.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jagaec:v:51:y:2019:i:02:p:249-266_00
Access Statistics for this article
More articles in Journal of Agricultural and Applied Economics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().