Assessing Transparency, Accuracy, and Consistency of Relative Importance of Cow-Calf Profitability Drivers Using Neural Networks versus Regression
Colson A. Tester,
Michael Popp,
Bruce L. Dixon and
Lanier L. Nalley
Journal of Agricultural and Applied Economics, 2020, vol. 52, issue 3, 352-367
Abstract:
Using both multivariate regression and artificial neural networks, the relative impact of variables affecting cow-calf profitability was examined over two cattle cycles for spring- and fall-calving herds that varied in size by time period analyzed when using different fertility management affecting forage yields with and without weather uncertainty. Neural networks had greater predictive accuracy than regression but at the cost of lesser transparency and predictive consistency. Explaining profitability, price, and quantity of cattle sold were consistently and respectively ranked first and second using both approaches. Importance rankings for hay sold and fertilizer were low and less consistent across techniques employed.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jagaec:v:52:y:2020:i:3:p:352-367_2
Access Statistics for this article
More articles in Journal of Agricultural and Applied Economics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().