Optimal Forest Management of Even-Aged Longleaf Pine Stands with Nontimber Benefits
Andres Susaeta
Journal of Agricultural and Applied Economics, 2023, vol. 55, issue 1, 1-12
Abstract:
We present an optimal control model to simultaneously determine the optimal planting density, thinning schedules, harvest age, and revenues of an even-aged longleaf pine (Pinus palustris Mill) stand, an iconic species in the Southeastern United States. We assume that the forest stand is managed for timber production and carbon sequestration under different site indexes—a measurement of potential forest productivity. Our simulation results show that the optimal planting density tends to increase when longleaf pine is managed in medium and high site indexes. Furthermore, the optimal harvest age tends to be extended with payments for carbon sequestration.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jagaec:v:55:y:2023:i:1:p:1-12_1
Access Statistics for this article
More articles in Journal of Agricultural and Applied Economics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().