Robustness, institutions, and large-scale change in social-ecological systems: the Hohokam of the Phoenix Basin
John M. Anderies
Journal of Institutional Economics, 2006, vol. 2, issue 2, 133-155
Abstract:
Societies frequently generate public infrastructure and institutional arrangements in order to mediate short-term environmental fluctuations. However, the social and ecological consequences of activities dealing with short-term disturbances may increase the vulnerability of the system to infrequent events or to long-term change in patterns of short-term variability. Exploring this possibility requires the study of long-term, transformational change. The archaeological record provides many examples of long-term change, such as the Hohokam who occupied the Phoenix Basin for over a thousand years and developed a complex irrigation society. In the eleventh and fourteenth centuries, the Hohokam society experienced reductions in complexity and scale possibly associated with regional climatic events. We apply a framework designed to explore robustness in coupled social-ecological systems to the Hohokam Cultural Sequence. Based on this analysis, a stylized formal model is developed to explore the possibility that the success of the Hohokam irrigation system and associated social structure may have increased their vulnerability to rare climactic shocks.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:jinsec:v:2:y:2006:i:02:p:133-155_00
Access Statistics for this article
More articles in Journal of Institutional Economics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().