THE PROPAGATION OF INDUSTRIAL BUSINESS CYCLES
Maximo Camacho and
Danilo Leiva-Leon ()
Macroeconomic Dynamics, 2019, vol. 23, issue 1, 144-177
Abstract:
This paper examines the evolution of the distribution of industry-specific business cycle linkages, which are modeled through a multivariate Markov-switching model and estimated by Gibbs sampling. Using nonparametric density estimation approaches, we find that the number and location of modes in the distribution of industrial dissimilarities change over the business cycle. There is a relatively stable trimodal pattern during expansionary and recessionary phases characterized by highly, moderately, and lowly synchronized industries. However, during phase changes, the density mass spreads from moderately synchronized industries to lowly synchronized industries. This agrees with a sequential transmission of the industrial business cycle dynamics.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: The propagation of industrial business cycles (2017) 
Working Paper: The Propagation of Industrial Business Cycles (2014) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:macdyn:v:23:y:2019:i:01:p:144-177_00
Access Statistics for this article
More articles in Macroeconomic Dynamics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().