MODELING HIGH-FREQUENCY FOREIGN EXCHANGE DATA DYNAMICS
Oscar Jorda and
Massimiliano Marcellino
Macroeconomic Dynamics, 2003, vol. 7, issue 4, 618-635
Abstract:
This paper shows that high-frequency, irregularly spaced, foreign exchange (FX) data can generate nonnormality, conditional heteroskedasticity, and leptokurtosis when aggregated into fixed-interval calendar time, even when these features are absent in the original DGP. Furthermore, we introduce a new approach to modeling these high-frequency irregularly spaced data based on the Poisson regression model. The new model is called the autoregressive conditional intensity model and it has the advantage of being simple and of maintaining the calendar timescale. To illustrate the virtues of this approach, we examine a classical issue in FX microstructure: the variation in information content as a function of fluctuations in the intensity of activity levels.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:macdyn:v:7:y:2003:i:04:p:618-635_02
Access Statistics for this article
More articles in Macroeconomic Dynamics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().