Dynamic Ideal Point Estimation via Markov Chain Monte Carlo for the U.S. Supreme Court, 1953–1999
Andrew D. Martin and
Kevin M. Quinn
Political Analysis, 2002, vol. 10, issue 2, 134-153
Abstract:
At the heart of attitudinal and strategic explanations of judicial behavior is the assumption that justices have policy preferences. In this paper we employ Markov chain Monte Carlo methods to fit a Bayesian measurement model of ideal points for all justices serving on the U.S. Supreme Court from 1953 through 1999. We are particularly interested in determining to what extent ideal points of justices change throughout their tenure on the Court. This is important because judicial politics scholars oftentimes invoke preference measures that are time invariant. To investigate preference change, we posit a dynamic item response model that allows ideal points to change systematically over time. Additionally, we introduce Bayesian methods for fitting multivariate dynamic linear models to political scientists. Our results suggest that many justices do not have temporally constant ideal points. Moreover, our ideal point estimates outperform existing measures and explain judicial behavior quite well across civil rights, civil liberties, economics, and federalism cases.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (120)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:10:y:2002:i:02:p:134-153_00
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().