A Robust Transformation Procedure for Interpreting Political Text
Lanny W. Martin and
Georg Vanberg
Political Analysis, 2008, vol. 16, issue 1, 93-100
Abstract:
In a recent article in the American Political Science Review, Laver, Benoit, and Garry (2003, “Extracting policy positions from political texts using words as data,” 97:311—331) propose a new method for conducting content analysis. Their Wordscores approach, by automating text-coding procedures, represents an advance in content analysis that will potentially have a large long-term impact on research across the discipline. To allow substantive interpretation, the scores produced by the Wordscores procedure require transformation. In this note, we address several shortcomings in the transformation procedure introduced in the original program. We demonstrate that the original transformation distorts the metric on which content scores are placed—hindering the ability of scholars to make meaningful comparisons across texts—and that it is very sensitive to the texts that are scored—opening up the possibility that researchers may generate, inadvertently or not, results that depend on the texts they choose to include in their analyses. We propose a transformation procedure that solves these problems.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:16:y:2008:i:01:p:93-100_00
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().