Testing the Predictions of the Multidimensional Spatial Voting Model with Roll Call Data
Gyung-Ho Jeong
Political Analysis, 2008, vol. 16, issue 2, 179-196
Abstract:
This paper develops a procedure for locating proposals and legislators in a multidimensional policy space by applying agenda-constrained ideal point estimation. Placing proposals and legislators on the same scale allows an empirical test of the predictions of the spatial voting model. I illustrate this procedure by testing the predictive power of the uncovered set—a solution concept of the multidimensional spatial voting model—using roll call data from the U.S. Senate. Since empirical tests of the predictive power of the uncovered set have been limited to experimental data, this is the first empirical test of the concept's predictive power using real-world data.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:16:y:2008:i:02:p:179-196_00
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().