EconPapers    
Economics at your fingertips  
 

Wouldn't It Be Nice …? The Automatic Unbiasedness of OLS (and GLS)

Robert C. Luskin

Political Analysis, 2008, vol. 16, issue 3, 345-349

Abstract: In a recent issue of this journal, Larocca (2005) makes two notable claims about the best linear unbiasedness of ordinary least squares (OLS) estimation of the linear regression model. The first, drawn from McElroy (1967), is that OLS remains best linear unbiased in the face of a particular kind of autocorrelation (constant for all pairs of observations). The second, much larger and more heterodox, is that the disturbance need not be assumed uncorrelated with the regressors for OLS to be best linear unbiased. The assumption is unnecessary, Larocca says, because “orthogonality [of disturbance and regressors] is a property of all OLS estimates” (p. 192). Of course OLS's being best linear unbiased still requires that the disturbance be homoskedastic and (McElroy's loophole aside) nonautocorrelated, but Larocca also adds that the same automatic orthogonality obtains for generalized least squares (GLS), which is also therefore best linear unbiased, when the disturbance is heteroskedastic or autocorrelated.

Date: 2008
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:16:y:2008:i:03:p:345-349_00

Access Statistics for this article

More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:polals:v:16:y:2008:i:03:p:345-349_00