EconPapers    
Economics at your fingertips  
 

Predicting Presidential Elections with Equally Weighted Regressors in Fair's Equation and the Fiscal Model

Alfred G. Cuzán and Charles M. Bundrick

Political Analysis, 2009, vol. 17, issue 3, 333-340

Abstract: Three-decade-old research suggests that although regression coefficients obtained with ordinary least squares (OLS) are optimal for fitting a model to a sample, unless the N over which the model was estimated is large, they are generally not very much superior and frequently inferior to equal weights or unit weights for making predictions in a validating sample. Yet, that research has yet to make an impact on presidential elections forecasting, where models are estimated with fewer than 25 elections, and often no more than 15. In this research note, we apply equal weights to generate out-of-sample and one-step-ahead predictions in two sets of related presidential elections models, Fair's presidential equation and the fiscal model. We find that most of the time, using equal weights coefficients does improve the forecasting performance of both.

Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:17:y:2009:i:03:p:333-340_01

Access Statistics for this article

More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:polals:v:17:y:2009:i:03:p:333-340_01