Estimation of Heterogeneous Treatment Effects from Randomized Experiments, with Application to the Optimal Planning of the Get-Out-the-Vote Campaign
Kosuke Imai and
Aaron Strauss
Political Analysis, 2011, vol. 19, issue 1, 1-19
Abstract:
Although a growing number of political scientists are conducting randomized experiments, many of them only report the average treatment effects and do not systematically explore the variation in treatment effects across subpopulations. This is unfortunate from a scientific point of view because heterogeneous treatment effects can provide additional substantive insights. This current state of affairs is also problematic from a policy makers' perspective since such studies do not identify subgroups for which treatments are effective. In this paper, we propose a formal two-step framework that first identifies heterogeneous treatment effects from a randomized experiment and then uses this information to derive an optimal policy about which treatment should be given to whom. Our proposed method avoids the risk of false discoveries that are likely in post hoc subgroup analysis routinely conducted in the discipline. We discuss our methodology in the context of get-out-the-vote randomized field experiments and show how the proposed two-step framework can be applied in real-world settings.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:19:y:2011:i:01:p:1-19_01
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().