Stochastic Process Methods with an Application to Budgetary Data
Christian Breunig and
Bryan D. Jones
Political Analysis, 2011, vol. 19, issue 1, 103-117
Abstract:
Political scientists have increasingly focused on causal processes that operate not solely on mean differences but on other stochastic characteristics of the distribution of a dependent variable. This paper surveys important statistical tools used to assess data in situations where the entire distribution of values is of interest. We first outline three broad conditions under which stochastic process methods are applicable and show that these conditions cover many domains of social inquiry. We discuss a variety of visual and analytical techniques, including distributional analysis, direct parameter estimates of probability density functions, and quantile regression. We illustrate the utility of these statistical tools with an application to budgetary data because strong theoretical expectations at the micro- and macrolevel exist about the distributional characteristics for such data. The expository analysis concentrates on three budget series (total, domestic, and defense outlays) of the U.S. government for 1800–2004.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:19:y:2011:i:01:p:103-117_01
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().