Fraudulent Democracy? An Analysis of Argentina's Infamous Decade Using Supervised Machine Learning
Francisco Cantú and
Sebastián M. Saiegh
Political Analysis, 2011, vol. 19, issue 4, 409-433
Abstract:
In this paper, we introduce an innovative method to diagnose electoral fraud using vote counts. Specifically, we use synthetic data to develop and train a fraud detection prototype. We employ a naive Bayes classifier as our learning algorithm and rely on digital analysis to identify the features that are most informative about class distinctions. To evaluate the detection capability of the classifier, we use authentic data drawn from a novel data set of district-level vote counts in the province of Buenos Aires (Argentina) between 1931 and 1941, a period with a checkered history of fraud. Our results corroborate the validity of our approach: The elections considered to be irregular (legitimate) by most historical accounts are unambiguously classified as fraudulent (clean) by the learner. More generally, our findings demonstrate the feasibility of generating and using synthetic data for training and testing an electoral fraud detection system.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:19:y:2011:i:04:p:409-433_01
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().