EconPapers    
Economics at your fingertips  
 

Compound Poisson—Gamma Regression Models for Dollar Outcomes That Are Sometimes Zero

Benjamin E. Lauderdale

Political Analysis, 2012, vol. 20, issue 3, 387-399

Abstract: Political scientists often study dollar-denominated outcomes that are zero for some observations. These zeros can arise because the data-generating process is granular: The observed outcome results from aggregation of a small number of discrete projects or grants, each of varying dollar size. This article describes the use of a compound distribution in which each observed outcome is the sum of a Poisson—distributed number of gamma distributed quantities, a special case of the Tweedie distribution. Regression models based on this distribution estimate loglinear marginal effects without either the ad hoc treatment of zeros necessary to use a log-dependent variable regression or the change in quantity of interest necessary to use a tobit or selection model. The compound Poisson—gamma regression is compared with commonly applied approaches in an application to data on high-speed rail grants from the United States federal government to the states, and against simulated data from several data-generating processes.

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:20:y:2012:i:03:p:387-399_01

Access Statistics for this article

More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:polals:v:20:y:2012:i:03:p:387-399_01