EconPapers    
Economics at your fingertips  
 

Election Fraud: A Latent Class Framework for Digit-Based Tests

Juraj Medzihorsky

Political Analysis, 2015, vol. 23, issue 4, 506-517

Abstract: Digit-based election forensics (DBEF) typically relies on null hypothesis significance testing, with undesirable effects on substantive conclusions. This article proposes an alternative free of this problem. It rests on decomposing the observed numeral distribution into the “no fraud” and “fraud” latent classes, by finding the smallest fraction of numerals that needs to be either removed or reallocated to achieve a perfect fit of the “no fraud” model. The size of this fraction can be interpreted as a measure of fraudulence. Both alternatives are special cases of measures of model fit—the π∗ mixture index of fit and the Δ dissimilarity index, respectively. Furthermore, independently of the latent class framework, the distributional assumptions of DBEF can be relaxed in some contexts. Independently or jointly, the latent class framework and the relaxed distributional assumptions allow us to dissect the observed distributions using models more flexible than those of existing DBEF. Reanalysis of Beber and Scacco's (2012) data shows that the approach can lead to new substantive conclusions.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:23:y:2015:i:04:p:506-517_01

Access Statistics for this article

More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:polals:v:23:y:2015:i:04:p:506-517_01