Error Correction Methods with Political Time Series
Taylor Grant and
Matthew J. Lebo
Political Analysis, 2016, vol. 24, issue 1, 3-30
Abstract:
While traditionally considered for non-stationary and cointegrated data, DeBoef and Keele suggest applying a General Error Correction Model (GECM) to stationary data with or without cointegration. The GECM has since become extremely popular in political science but practitioners have confused essential points. For one, the model is treated as perfectly flexible when, in fact, the opposite is true. Time series of various orders of integration–stationary, non-stationary, explosive, near- and fractionally integrated–should not be analyzed together but researchers consistently make this mistake. That is, without equation balance the model is misspecified and hypothesis tests and long-run-multipliers are unreliable. Another problem is that the error correction term's sampling distribution moves dramatically depending upon the order of integration, sample size, number of covariates, and the boundedness of Yt. This means that practitioners are likely to overstate evidence of error correction, especially when using a traditional t-test. We evaluate common GECM practices with six types of data, 746 simulations, and five paper replications.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:24:y:2016:i:1:p:3-30_2
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().