Fractionally Integrated Data and the Autodistributed Lag Model: Results from a Simulation Study
Justin Esarey
Political Analysis, 2016, vol. 24, issue 1, 42-49
Abstract:
Two contributions in this issue, Grant and Lebo and Keele, Linn, and Webb, recommend using an ARFIMA model to diagnose the presence of and estimate the degree of fractional integration, then either (i) fractionally differencing the data before analysis or, (ii) for cointegrated variables, estimating a fractional error correction model. But Keele, Linn, and Webb also present evidence that ARFIMA models yield misleading indicators of the presence and degree of fractional integration in a series with fewer than 1000 observations. In a simulation study, I find evidence that the simple autodistributed lag model (ADL) or equivalent error correction model (ECM) can, without first testing or correcting for fractional integration, provide a useful estimate of the immediate and long-run effects of weakly exogenous variables in fractionally integrated (but stationary) data.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:24:y:2016:i:1:p:42-49_4
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().