EconPapers    
Economics at your fingertips  
 

Geo-Nested Analysis: Mixed-Methods Research with Spatially Dependent Data

Imke Harbers and Matthew C. Ingram

Political Analysis, 2017, vol. 25, issue 3, 289-307

Abstract: Mixed-methods designs, especially those where cases selected for small-N analysis (SNA) are nested within a large-N analysis (LNA), have become increasingly popular. Yet, since the LNA in this approach assumes that units are independently distributed, such designs are unable to account for spatial dependence, and dependence becomes a threat to inference, rather than an issue for empirical or theoretical investigation. This is unfortunate, since research in political science has recently drawn attention to diffusion and interconnectedness more broadly. In this paper we develop a framework for mixed-methods research with spatially dependent data—a framework we label “geo-nested analysis”—where insights gleaned at each step of the research process set the agenda for the next phase and where case selection for SNA is based on diagnostics of a spatial-econometric analysis. We illustrate our framework using data from a seminal study of homicides in the United States.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:25:y:2017:i:03:p:289-307_00

Access Statistics for this article

More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:polals:v:25:y:2017:i:03:p:289-307_00