EconPapers    
Economics at your fingertips  
 

Longitudinal Network Centrality Using Incomplete Data

Zachary C. Steinert-Threlkeld

Political Analysis, 2017, vol. 25, issue 3, 308-328

Abstract: How do individuals’ influence in a large social network change? Social scientists have difficulty answering this question because measuring influence requires frequent observations of a population of individuals’ connections to each other, while sampling that social network removes information in a way that can bias inferences. This paper introduces a method to measure influence over time accurately from sampled network data. Ranking individuals by the sum of their connections’ connections—neighbor cumulative indegree centrality—preserves the rank influence ordering that would be achieved in the presence of complete network data, lowering the barrier to measuring influence accurately. The paper then shows how to measure that variable changes each day, making it possible to analyze when and why an individual’s influence in a network changes. This method is demonstrated and validated on 21 Twitter accounts in Bahrain and Egypt from early 2011. The paper then discusses how to use the method in domains such as voter mobilization and marketing.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:25:y:2017:i:03:p:308-328_00

Access Statistics for this article

More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:polals:v:25:y:2017:i:03:p:308-328_00