Game Changers: Detecting Shifts in Overdispersed Count Data
Matthew Blackwell
Political Analysis, 2018, vol. 26, issue 2, 230-239
Abstract:
In this paper, I introduce a Bayesian model for detecting changepoints in a time series of overdispersed counts, such as contributions to candidates over the course of a campaign or counts of terrorist violence. To avoid having to specify the number of changepoint ex ante, this model incorporates a hierarchical Dirichlet process prior to estimate the number of changepoints as well as their location. This allows researchers to discover salient structural breaks and perform inference on the number of such breaks in a given time series. I demonstrate the usefulness of the model with applications to campaign contributions in the 2012 U.S. Republican presidential primary and incidences of global terrorism from 1970 to 2015.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:26:y:2018:i:02:p:230-239_00
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().