A Bounds Approach to Inference Using the Long Run Multiplier
Clayton Webb,
Suzanna Linn and
Matthew Lebo
Political Analysis, 2019, vol. 27, issue 3, 281-301
Abstract:
Pesaran, Shin, and Smith (2001) (PSS) proposed a bounds procedure for testing for the existence of long run cointegrating relationships between a unit root dependent variable ($y_{t}$) and a set of weakly exogenous regressors $\boldsymbol{x}_{t}$ when the analyst does not know whether the independent variables are stationary, unit root, or mutually cointegrated processes. This procedure recognizes the analyst’s uncertainty over the nature of the regressors but not the dependent variable. When the analyst is uncertain whether $y_{t}$ is a stationary or unit root process, the test statistics proposed by PSS are uninformative for inference on the existence of a long run relationship (LRR) between $y_{t}$ and $\boldsymbol{x}_{t}$. We propose the long run multiplier (LRM) test statistic as a means of testing for LRRs without knowing whether the series are stationary or unit roots. Using stochastic simulations, we demonstrate the behavior of the test statistic given uncertainty about the univariate dynamics of both $y_{t}$ and $\boldsymbol{x}_{t}$, illustrate the bounds of the test statistic, and generate small sample and approximate asymptotic critical values for the upper and lower bounds for a range of sample sizes and model specifications. We demonstrate the utility of the bounds framework for testing for LRRs in models of public policy mood and presidential success.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:27:y:2019:i:03:p:281-301_00
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().