Hierarchical Item Response Models for Analyzing Public Opinion
Xiang Zhou
Political Analysis, 2019, vol. 27, issue 4, 481-502
Abstract:
Opinion surveys often employ multiple items to measure the respondent’s underlying value, belief, or attitude. To analyze such types of data, researchers have often followed a two-step approach by first constructing a composite measure and then using it in subsequent analysis. This paper presents a class of hierarchical item response models that help integrate measurement and analysis. In this approach, individual responses to multiple items stem from a latent preference, of which both the mean and variance may depend on observed covariates. Compared with the two-step approach, the hierarchical approach reduces bias, increases efficiency, and facilitates direct comparison across surveys covering different sets of items. Moreover, it enables us to investigate not only how preferences differ among groups, vary across regions, and evolve over time, but also levels, patterns, and trends of attitude polarization and ideological constraint. An open-source R package, hIRT, is available for fitting the proposed models.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:27:y:2019:i:04:p:481-502_00
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().