EconPapers    
Economics at your fingertips  
 

Predicting Network Events to Assess Goodness of Fit of Relational Event Models

Laurence Brandenberger

Political Analysis, 2019, vol. 27, issue 4, 556-571

Abstract: Relational event models are becoming increasingly popular in modeling temporal dynamics of social networks. Due to their nature of combining survival analysis with network model terms, standard methods of assessing model fit are not suitable to determine if the models are specified sufficiently to prevent biased estimates. This paper tackles this problem by presenting a simple procedure for model-based simulations of relational events. Predictions are made based on survival probabilities and can be used to simulate new event sequences. Comparing these simulated event sequences to the original event sequence allows for in depth model comparisons (including parameter as well as model specifications) and testing of whether the model can replicate network characteristics sufficiently to allow for unbiased estimates.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:27:y:2019:i:04:p:556-571_00

Access Statistics for this article

More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Keith Waters ().

 
Page updated 2020-07-25
Handle: RePEc:cup:polals:v:27:y:2019:i:04:p:556-571_00