Word Embeddings for the Analysis of Ideological Placement in Parliamentary Corpora
Ludovic Rheault and
Christopher Cochrane
Political Analysis, 2020, vol. 28, issue 1, 112-133
Abstract:
Word embeddings, the coefficients from neural network models predicting the use of words in context, have now become inescapable in applications involving natural language processing. Despite a few studies in political science, the potential of this methodology for the analysis of political texts has yet to be fully uncovered. This paper introduces models of word embeddings augmented with political metadata and trained on large-scale parliamentary corpora from Britain, Canada, and the United States. We fit these models with indicator variables of the party affiliation of members of parliament, which we refer to as party embeddings. We illustrate how these embeddings can be used to produce scaling estimates of ideological placement and other quantities of interest for political research. To validate the methodology, we assess our results against indicators from the Comparative Manifestos Project, surveys of experts, and measures based on roll-call votes. Our findings suggest that party embeddings are successful at capturing latent concepts such as ideology, and the approach provides researchers with an integrated framework for studying political language.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:28:y:2020:i:1:p:112-133_6
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().