EconPapers    
Economics at your fingertips  
 

A Method to Audit the Assignment of Registered Voters to Districts and Precincts

Brian Amos and Michael P. McDonald

Political Analysis, 2020, vol. 28, issue 3, 356-371

Abstract: Electoral boundaries are an integral part of election administration. District boundaries delineate which legislative election voters are eligible to participate in, and precinct boundaries identify, in many localities, where voters cast in-person ballots on Election Day. Election officials are tasked with resolving a tremendously large number of intersections of registered voters with overlapping electoral boundaries. Any large-scale data project is susceptible to errors, and this task is no exception. In two recent close elections, these errors were consequential to the outcome. To address this problem, we describe a method to audit the assignment of registered voters to districts. We apply the methodology to Florida’s voter registration file to identify thousands of registered voters assigned to the wrong state House district, many of which local election officials have verified and rectified. We discuss how election officials can best use this technique to detect registered voters assigned to the wrong electoral boundary.

Date: 2020
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:28:y:2020:i:3:p:356-371_4

Access Statistics for this article

More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Keith Waters ().

 
Page updated 2020-06-03
Handle: RePEc:cup:polals:v:28:y:2020:i:3:p:356-371_4