The Multiclass Classification of Newspaper Articles with Machine Learning: The Hybrid Binary Snowball Approach
Miklós Sebők and
Zoltán Kacsuk
Political Analysis, 2021, vol. 29, issue 2, 236-249
Abstract:
In this article, we present a machine learning-based solution for matching the performance of the gold standard of double-blind human coding when it comes to content analysis in comparative politics. We combine a quantitative text analysis approach with supervised learning and limited human resources in order to classify the front-page articles of a leading Hungarian daily newspaper based on their full text. Our goal was to assign items in our dataset to one of 21 policy topics based on the codebook of the Comparative Agendas Project. The classification of the imbalanced classes of topics was handled by a hybrid binary snowball workflow. This relies on limited human resources as well as supervised learning; it simplifies the multiclass problem to one of binary choice; and it is based on a snowball approach as we augment the training set with machine-classified observations after each successful round and also between corpora. Our results show that our approach provided better precision results (of over 80% for most topic codes) than what is customary for human coders and most computer-assisted coding projects. Nevertheless, this high precision came at the expense of a relatively low, below 60%, share of labeled articles.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:29:y:2021:i:2:p:236-249_6
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().