Bias from Network Misspecification Under Spatial Dependence
Timm Betz,
Scott J. Cook and
Florian M. Hollenbach
Political Analysis, 2021, vol. 29, issue 2, 260-266
Abstract:
The prespecification of the network is one of the biggest hurdles for applied researchers in undertaking spatial analysis. In this letter, we demonstrate two results. First, we derive bounds for the bias in nonspatial models with omitted spatially-lagged predictors or outcomes. These bias expressions can be obtained without prior knowledge of the network, and are more informative than familiar omitted variable bias formulas. Second, we derive bounds for the bias in spatial econometric models with nondifferential error in the specification of the weights matrix. Under these conditions, we demonstrate that an omitted spatial input is the limit condition of including a misspecificed spatial weights matrix. Simulated experiments further demonstrate that spatial models with a misspecified weights matrix weakly dominate nonspatial models. Our results imply that, where cross-sectional dependence is presumed, researchers should pursue spatial analysis even with limited information on network ties.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:29:y:2021:i:2:p:260-266_8
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().