EconPapers    
Economics at your fingertips  
 

Learning to See: Convolutional Neural Networks for the Analysis of Social Science Data

Michelle Torres and Francisco Cantú

Political Analysis, 2022, vol. 30, issue 1, 113-131

Abstract: We provide an introduction of the functioning, implementation, and challenges of convolutional neural networks (CNNs) to classify visual information in social sciences. This tool can help scholars to make more efficient the tedious task of classifying images and extracting information from them. We illustrate the implementation and impact of this methodology by coding handwritten information from vote tallies. Our paper not only demonstrates the contributions of CNNs to both scholars and policy practitioners, but also presents the practical challenges and limitations of the method, providing advice on how to deal with these issues.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:30:y:2022:i:1:p:113-131_6

Access Statistics for this article

More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:polals:v:30:y:2022:i:1:p:113-131_6