Understanding, Choosing, and Unifying Multilevel and Fixed Effect Approaches
Chad Hazlett and
Leonard Wainstein
Political Analysis, 2022, vol. 30, issue 1, 46-65
Abstract:
When working with grouped data, investigators may choose between “fixed effects” models (FE) with specialized (e.g., cluster-robust) standard errors, or “multilevel models” (MLMs) employing “random effects.” We review the claims given in published works regarding this choice, then clarify how these approaches work and compare by showing that: (i) random effects employed in MLMs are simply “regularized” fixed effects; (ii) unmodified MLMs are consequently susceptible to bias—but there is a longstanding remedy; and (iii) the “default” MLM standard errors rely on narrow assumptions that can lead to undercoverage in many settings. Our review of over 100 papers using MLM in political science, education, and sociology show that these “known” concerns have been widely ignored in practice. We describe how to debias MLM’s coefficient estimates, and provide an option to more flexibly estimate their standard errors. Most illuminating, once MLMs are adjusted in these two ways the point estimate and standard error for the target coefficient are exactly equal to those of the analogous FE model with cluster-robust standard errors. For investigators working with observational data and who are interested only in inference on the target coefficient, either approach is equally appropriate and preferable to uncorrected MLM.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:30:y:2022:i:1:p:46-65_3
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().