Combining Outcome-Based and Preference-Based Matching: A Constrained Priority Mechanism
Avidit Acharya,
Kirk Bansak and
Jens Hainmueller
Political Analysis, 2022, vol. 30, issue 1, 89-112
Abstract:
We introduce a constrained priority mechanism that combines outcome-based matching from machine learning with preference-based allocation schemes common in market design. Using real-world data, we illustrate how our mechanism could be applied to the assignment of refugee families to host country locations, and kindergarteners to schools. Our mechanism allows a planner to first specify a threshold $\bar g$ for the minimum acceptable average outcome score that should be achieved by the assignment. In the refugee matching context, this score corresponds to the probability of employment, whereas in the student assignment context, it corresponds to standardized test scores. The mechanism is a priority mechanism that considers both outcomes and preferences by assigning agents (refugee families and students) based on their preferences, but subject to meeting the planner’s specified threshold. The mechanism is both strategy-proof and constrained efficient in that it always generates a matching that is not Pareto dominated by any other matching that respects the planner’s threshold.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:30:y:2022:i:1:p:89-112_5
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().