EconPapers    
Economics at your fingertips  
 

Polls, Context, and Time: A Dynamic Hierarchical Bayesian Forecasting Model for US Senate Elections

Yehu Chen, Roman Garnett and Jacob M. Montgomery

Political Analysis, 2023, vol. 31, issue 1, 113-133

Abstract: We present a hierarchical Dirichlet regression model with Gaussian process priors that enables accurate and well-calibrated forecasts for U.S. Senate elections at varying time horizons. This Bayesian model provides a balance between predictions based on time-dependent opinion polls and those made based on fundamentals. It also provides uncertainty estimates that arise naturally from historical data on elections and polls. Experiments show that our model is highly accurate and has a well calibrated coverage rate for vote share predictions at various forecasting horizons. We validate the model with a retrospective forecast of the 2018 cycle as well as a true out-of-sample forecast for 2020. We show that our approach achieves state-of-the art accuracy and coverage despite relying on few covariates.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:31:y:2023:i:1:p:113-133_7

Access Statistics for this article

More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:polals:v:31:y:2023:i:1:p:113-133_7