An Improved Method of Automated Nonparametric Content Analysis for Social Science
Connor T. Jerzak,
Gary King and
Anton Strezhnev
Political Analysis, 2023, vol. 31, issue 1, 42-58
Abstract:
Some scholars build models to classify documents into chosen categories. Others, especially social scientists who tend to focus on population characteristics, instead usually estimate the proportion of documents in each category—using either parametric “classify-and-count” methods or “direct” nonparametric estimation of proportions without individual classification. Unfortunately, classify-and-count methods can be highly model-dependent or generate more bias in the proportions even as the percent of documents correctly classified increases. Direct estimation avoids these problems, but can suffer when the meaning of language changes between training and test sets or is too similar across categories. We develop an improved direct estimation approach without these issues by including and optimizing continuous text features, along with a form of matching adapted from the causal inference literature. Our approach substantially improves performance in a diverse collection of 73 datasets. We also offer easy-to-use software that implements all ideas discussed herein.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:31:y:2023:i:1:p:42-58_3
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().