Change-Point Detection and Regularization in Time Series Cross-Sectional Data Analysis
Jong Hee Park and
Soichiro Yamauchi
Political Analysis, 2023, vol. 31, issue 2, 257-277
Abstract:
Researchers of time series cross-sectional data regularly face the change-point problem, which requires them to discern between significant parametric shifts that can be deemed structural changes and minor parametric shifts that must be considered noise. In this paper, we develop a general Bayesian method for change-point detection in high-dimensional data and present its application in the context of the fixed-effect model. Our proposed method, hidden Markov Bayesian bridge model, jointly estimates high-dimensional regime-specific parameters and hidden regime transitions in a unified way. We apply our method to Alvarez, Garrett, and Lange’s (1991, American Political Science Review 85, 539–556) study of the relationship between government partisanship and economic growth and Allee and Scalera’s (2012, International Organization 66, 243–276) study of membership effects in international organizations. In both applications, we found that the proposed method successfully identify substantively meaningful temporal heterogeneity in parameters of regression models.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:31:y:2023:i:2:p:257-277_6
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().